

MATHEMATICS (EXTENSION 2)

2013 HSC Course Assessment Task 1 November 30, 2012

General instructions

- Working time 1 hour. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer grid provided on page 3.

(SECTION II)

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER: .		# BOOKLETS USED:
Class (please ✔)		
○ 12M4A – Mr Fletcher	\bigcirc 12M4B – Mr Lam	\bigcirc 12M4C – Ms Ziaziaris

Marker's use only.

QUESTION	1-5	6	7	8	Total	%
MARKS	- 5	15	15		50	

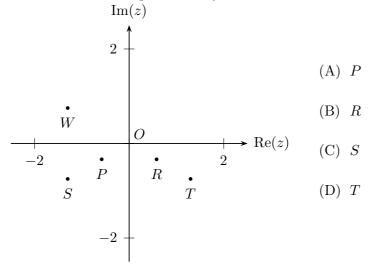
Section I: Objective response

Mark your answers on the multiple choice sheet provided.

Marks

1

The point W on the Argand diagram below represents a number w where |w| = 1.5. 1 The number w^{-1} is best represented by



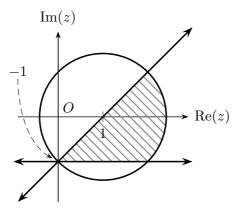
- Which of the following gives the value of z if $z^2 = 4\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$? 1
 - (A) $\sqrt{3} + i \text{ or } -\sqrt{3} i$
- (C) $\sqrt{3} i$ or $\sqrt{3} + i$
- (B) $1 \sqrt{3}i$ or $-1 + \sqrt{3}i$
- (D) $1 \sqrt{3}i \text{ or } 1 + \sqrt{3}i$
- 3. Let $z = \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}$. What is the imaginary part of z i?

- (A) $-\frac{i}{2}$ (B) $-\frac{3i}{2}$ (C) $-\frac{1}{2}$

1

1

4. What inequality given could define the shaded area?



(A)
$$|z-1| \le \sqrt{2}$$
 and $0 \le \operatorname{Arg}(z-i) \le \frac{\pi}{4}$.

(B)
$$|z-1| \le \sqrt{2}$$
 and $0 \le \operatorname{Arg}(z+i) \le \frac{\pi}{4}$.

(C)
$$|z-1| \le 1$$
 and $0 \le \operatorname{Arg}(z-i) \le \frac{\pi}{4}$.

(D)
$$|z-1| \le 1$$
 and $0 \le \operatorname{Arg}(z+i) \le \frac{\pi}{4}$.

- **5.** Which of the following statement(s) is false, given z=a+ib where $a\neq 0$ and $b\neq 0$?
 - (A) $z \overline{z} = 2bi$

(C) $|z| + |\overline{z}| = |z + \overline{z}|$

(B) $|z|^2 = |z| |\overline{z}|$

(D) $\operatorname{Arg}(z) + \operatorname{Arg}(\overline{z}) = 0$

Answer grid for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "•"

- 1- (A) (B) (C) (D)
- $\mathbf{2}$ (A) (B) (C) (D)
- 3 (A) (B) (C) (D)
- 4 (A) (B) (C) (D)
- $\mathbf{5}$ (A) (B) (C) (D)

End of Section I. Examination continues overleaf.

Section II: Short answer

Glossary

- $\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$ set of all integers.
- \mathbb{Z}^+ all positive integers (excludes zero)
- \mathbb{R} set of all real numbers

Question 6 (15 Marks)

(a)	Find	the exact value of a and b if $\frac{4+3i}{1+\sqrt{2}i}=a+ib$ such that $a,b\in\mathbb{R}$.	2
(b)	i.	Express $z = 1 + i\sqrt{3}$ in modulus-argument form.	2
	ii.	Hence show that $z^{10} + 512z = 0$.	2
(c)	Give	$z_1 = 4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right) \text{ and } z_2 = 2\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$	
	i.	On an Argand diagram, draw the vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} representing z_1 , z_2 and $z_1 + z_2$ respectively.	2
	ii.	Hence or otherwise, find $ z_1 + z_2 $ in simplest exact form.	2
(d)	i.	Solve $z^4 + 1 = 0$, giving your answers in modulus-argument form.	3
	ii.	Plot these solutions on the Argand diagram.	1

iii. Find the exact area of the quadrilateral that they form.

Commence a NEW page.

Marks

1

3

Question 7 (15 Marks)

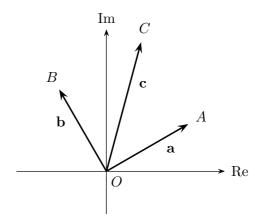
Commence a NEW page.

Marks

- (a) i. If $z = \cos \theta + i \sin \theta$, show that $z^n + \frac{1}{z^n} = 2 \cos n\theta$.
 - ii. Given that $z + \frac{1}{z} = \sqrt{2}$, find the value of $z^{10} + \frac{1}{z^{10}}$.
- (b) Given that 1, ω and ω^2 are the cube roots of unity, find the value of $(1+2\omega+3\omega^2)(1+2\omega^2+3\omega)$.
- (c) i. Solve $w^2 = -11 60i$ for w, writing your answer in the form w = x + iy where $x, y \in \mathbb{R}$.
 - ii. Hence or otherwise, solve the equation

 $z^{2} - (1+4i)z - (1-17i) = 0$

(d) In the Argand diagram below, vectors **a**, **b**, **c** represent the complex numbers z_1 , z_2 and $z_1 + z_2$ respectively, where $z_1 = \cos \theta + i \sin \theta$ and $z_1 + z_2 = (1+i)z_1$.



- i. Express z_2 in terms of z_1 , and show that OACB is a square.
- ii. Show that $(z_1 + z_2)\overline{(z_1 z_2)} = 2i$.

Question 8	(15 Marks)	Commence a NEW page.	Marks

- (a) i. On the same diagram, sketch the locus of both |z-2|=2 and |z|=|z-4i|.
 - ii. What is the complex number represented by the point of intersection of these two loci?
- (b) i. On an Argand diagram, sketch the locus of the point P representing z such that $\left|z-\left(\sqrt{3}+i\right)\right|=1$
 - ii. Find the set of possible values of |z| and the set of possible values for Arg z. 2
- (c) Let z=x+iy, where $x,\,y\in\mathbb{R}$ be the complex number satisfying the inequality $z\overline{z}+(1-2i)z+(1+2i)\overline{z}\leq 4$

Sketch the locus of z on an Argand diagram.

- (d) $\arg(z-2) = \arg(z+2) + \frac{\pi}{4}$ is the locus of the point P representing z on an Argand diagram.
 - i. Show with a diagram why this locus is an arc of a circle.
 - ii. Find the centre and radius of this circle.

End of paper.

BLANK PAGE

BLANK PAGE

Suggested Solutions

Section I

Section II

Question 6 (Ziaziaris)

(a) (2 marks)

$$\frac{4+3i}{1+\sqrt{2}i} \times \frac{1-\sqrt{2}i}{1-\sqrt{2}i}$$

$$= \frac{4+3\sqrt{2}+i\left(3-4\sqrt{2}\right)}{1+2}$$

$$= \frac{4+3\sqrt{2}}{3}+i\left(\frac{3-4\sqrt{2}}{3}\right)$$

$$a = \frac{4+3\sqrt{2}}{3} \qquad b = \left(\frac{3-4\sqrt{2}}{3}\right)$$

(b) i.
$$(2 \text{ marks})$$

$$z = 1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$z^{10} = 2^{10} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)^{10}$$

$$= 2^{10} \left(\cos \frac{10\pi}{3} + i \sin \frac{10\pi}{3} \right)$$

$$= 2^{10} \left(\cos \frac{-2\pi}{3} + i \sin \frac{-2\pi}{3} \right)$$

$$512z = 512 \times 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$$

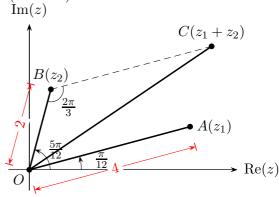
$$= 2^{10} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$$

$$\therefore z^{10} + 512z$$

$$= 2^{10} \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2} + \frac{1}{2} + i \frac{\sqrt{3}}{2} \right)$$

$$= 0$$

(c) i. (2 marks)



ii. (2 marks) In OACB,

$$\angle AOB = \frac{4\pi}{12} = \frac{\pi}{3}$$

As OACB is a parallelogram, then $\angle OBC = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$. Applying the cosine rule in $\triangle OBC$,

$$OC^{2} = |z_{1} + z_{2}|$$

$$= 2^{2} + 4^{2} - 2(2)(4)\cos\frac{2\pi}{3}$$

$$= 20 - 8 \times \left(-\frac{1}{2}\right) = 28$$

$$\therefore OC = |z_{1} + z_{2}| = \sqrt{28} = 2\sqrt{7}$$

$$z^4 + 1 = 0$$
$$z^4 = -1$$

Letting $z = \cos \theta + i \sin \theta$,

$$(\cos \theta + i \sin \theta)^4$$

= $\cos(\pi + 2k\pi) + i \sin(\pi + 2k\pi)$

By De Moivre's Theorem,

$$\therefore \cos \theta + i \sin \theta$$

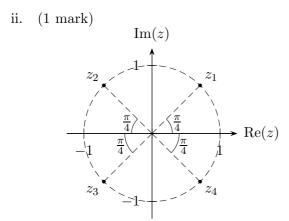
$$= \cos \left(\frac{\pi + 2k\pi}{4}\right) + i \sin \left(\frac{\pi + 2k\pi}{4}\right)$$
where $k = 0, 1, 2, 3$

$$z_1 = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \qquad k = 0$$

$$z_2 = \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right) \qquad k = 1$$

$$z_3 = \cos\left(\frac{-3\pi}{4}\right) + i\sin\left(\frac{-3\pi}{4}\right) \quad k = 2$$

$$z_4 = \cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right) \qquad k = 3$$



iii. (1 mark) Shape formed is a rhombus, with diagonals of length 2

$$A = \frac{1}{2}xy = \frac{1}{2} \times 2 \times 2 = 2$$

Question 7 (Fletcher)

(a) i. (1 mark)

$$z = \cos \theta + i \sin \theta$$

$$\therefore z^{n} = \cos n\theta + i \sin n\theta$$

$$z^{-n} = \cos(-n\theta) + i \sin(-n\theta)$$

$$= \cos n\theta - i \sin n\theta$$

$$\therefore z^{n} + z^{-n} = 2\cos(n\theta)$$

ii. (2 marks)

$$z + \frac{1}{z} = \sqrt{2} = 2\cos\theta$$
$$\therefore \cos\theta = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$
$$\therefore \theta = \frac{\pi}{4}$$

Now,

$$z^{10} + \frac{1}{z^{10}} = 2\cos(10\theta)$$
$$\therefore 2\cos\left(10 \times \frac{\pi}{4}\right) = 2\cos\left(\frac{5\pi}{2}\right)$$
$$= 2\cos\frac{\pi}{2} = 0$$

(b) (3 marks) 1, ω , ω^2 are cube roots of unity, i.e.

$$\omega^{3} - 1 = 0$$

$$(\omega - 1) (\omega^{2} + \omega + 1) = 0$$

$$\omega^{2} = -\omega - 1$$

Also, $\omega^3 = 1$. Use these properties to reduce higher powers of ω to lower powers:

$$(1 + 2\omega + 3\omega^2) (1 + 2\omega^2 + 3\omega)$$

$$= (1 + \omega + \omega^2 + \omega + 2\omega^2)$$

$$(1 + \omega + \omega^2 + \omega^2 + 2\omega)$$

$$= (2\omega^2 + \omega) (\omega^2 + 2\omega)$$

$$= \omega^2 (2\omega + 1) (\omega + 2)$$

$$= \omega^2 (2\omega^2 + 5\omega + 2)$$

$$= 2\omega^4 + 5\omega^3 + 2\omega^2$$

$$= 2\omega + 5 + 2(-\omega - 1)$$

$$= 5 - 2 = 3$$

(c) i. (2 marks)

$$\omega^2 = -11 - 60i$$

Let
$$\omega = x + iy$$

$$\therefore (x + iy)^2 = -11 - 60i$$

$$x^2 - y^2 + i(2xy) = -11 - 60i$$

Equating real and imaginary parts,

$$\begin{cases} x^2 - y^2 = -11 & (1) \\ 2xy = -60 & (2) \end{cases}$$

From (2),

$$xy = -30$$

$$y = -\frac{30}{x}$$

$$\therefore x^2 - \left(\frac{-30}{x}\right)^2 = -11$$

$$x^2 - \frac{900}{x^2} = -11$$

$$x^4 - 900 = -11x^2$$

$$x^4 + 11x^2 - 900 = 0$$

Letting $u = x^2$,

$$u^{2} + 11u - 900 = 0$$

$$(u+36)(u-25) = 0u = -36, 25$$

$$\therefore x^{2} = 25$$

$$x = \pm 5 \quad y = \mp 6$$

$$\therefore \omega = \pm (5-6i)$$

$$z^{2} - (1+4i)z - (1-17i) = 0$$

$$z = \frac{(1+4i) \pm \sqrt{(1+4i)^{2} + 4(1-17i)}}{2}$$

$$= \frac{(1+4i) \pm \sqrt{1+8i + 16i^{2} + 4(1-17i)}}{2}$$

$$= \frac{(1+4i) \pm \sqrt{-15 + 8i + 4 - 68i}}{2}$$

$$= \frac{(1+4i) \pm \sqrt{-11 - 60i}}{2}$$

$$= \frac{(1+4i) \pm (5-6i)}{2}$$

Positive solution:

$$z = \frac{1+4i+5-6i}{2}$$
$$= \frac{6-2i}{2} = 3-i$$

Negative solution:

$$z = \frac{1 + 4i - (5 - 6i)}{2}$$
$$= \frac{-4 + 10i}{2} = -2 + 5i$$

(d) i. (2 marks)

$$z_1 + z_2 = (1+i)z_1$$
$$z_1 + z_2 = z_1 + iz_1$$
$$\therefore z_2 = iz_1$$

- Hence z_2 is a rotation of z_1 by 90° , i.e. $\angle AOB = \frac{\pi}{2}$.
- As OA = OB and $\angle AOB = 90^{\circ}$, OACB is a square.
- ii. (2 marks)

- As **c** is the diagonal of a square, then C will be representing the complex number $\sqrt{2}(\cos\theta + i\sin\theta)$.
- Also, $\mathbf{b} \mathbf{a}$ is also the diagonal of the square OACB, it will also have modulus $\sqrt{2}$. In addition, it is a rotation of -90° of the vector \mathbf{c} , hence $\mathbf{b} \mathbf{a}$ (representing the complex number $z_1 z_2$) is

$$\sqrt{2}\left(\cos\left(\theta - \frac{\pi}{2}\right) + i\sin\left(\theta - \frac{\pi}{2}\right)\right)$$

• $\overline{z_1 - z_2}$ is therefore

$$\sqrt{2} \left(\cos \left(\theta - \frac{\pi}{2} \right) - i \sin \left(\theta - \frac{\pi}{2} \right) \right)$$
$$= \sqrt{2} \left(\cos \left(\frac{\pi}{2} - \theta \right) + i \sin \left(\frac{\pi}{2} - \theta \right) \right)$$

• Multiplying $z_1 + z_2$ with $\overline{z_1 - z_2}$,

$$\sqrt{2} \left(\cos \theta + i \sin \theta\right)$$

$$\times \sqrt{2} \left(\cos \left(\frac{\pi}{2} - \theta\right) + i \sin \left(\frac{\pi}{2} - \theta\right)\right)$$

$$= 2 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$$

$$= 2i$$

Alternatively, expand via algebraic method:

$$z_{2} = iz_{1}$$

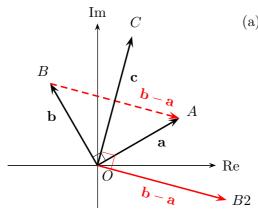
$$(z_{1} + z_{2}) (\overline{z_{1} - z_{2}}) = (z_{1} + iz_{1}) (\overline{z_{1} - iz_{1}})$$

$$= z_{1}(1 + i)\overline{z_{1}}(\overline{1 - i})$$

$$= z_{1}\overline{z_{1}}(1 + i)^{2}$$

$$= |z_{1}|^{2} \times 2i = 2i$$

Question 8 (Lam)



i. (2 marks) Im(z) |z| = |z - 4i| 2 -2 |z - 2| = 2Re(z)

ii.
$$(1 \text{ mark})$$
$$2 + 2i$$

(b) i.
$$(2 \text{ marks})$$

$$\text{Im}(z)$$

$$2 \xrightarrow{\frac{\pi}{6}} 1$$

$$\text{Re}(z)$$

$$0 \le \operatorname{Arg} z \le \frac{\pi}{3} \qquad 1 \le |z| \le 3$$

(c) (4 marks)

$$z\overline{z} + (1-2i)z + (1+2i)\overline{z} < 4$$

Let
$$z = x + iy$$
. Then $\overline{z} = x - iy$:

$$(x+iy)(x-iy) + (1-2i)(x+iy) + (1+2i)(x-iy)$$

$$= x^2 + y^2 + x + 2y + i(-2x+y)$$

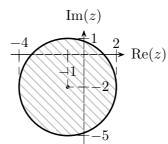
$$+ x + 2y + i(2x-y)$$

$$= x^2 + y^2 + 2x + 4y$$

$$= (x^2 + 2x + 1) + (y^2 + 4y + 4) - 5 \le 4$$

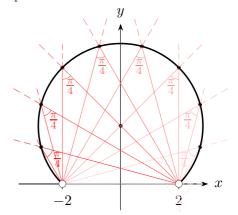
$$\therefore (x+1)^2 + (y+2)^2 \le 9$$

Locus is the disc with centre (-1, -2) and r = 3:

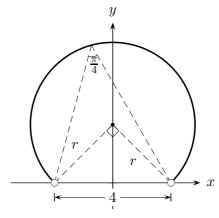


(d) i. (2 marks)
$$\arg(z-2) - \arg(z+2) = \frac{\pi}{4}$$

- $\arg(z-2) = \theta$ results in a straight line, commencing at x=2 where the line makes an angle of θ with the positive x axis (similarly for $\arg(z+2) = \phi$).
- Angle between the line from z = 2 & z = -2 respectively is $\frac{\pi}{4}$.



- Hence the locus is a major arc of a circle above the x axis with AB being a chord of the circle, excluding z = -2 and z = 2.
- ii. (2 marks)



- One of these "angles at the circumference" will be made by the diameter of the circle. Hence the angle at the centre of the circle will be $\frac{\pi}{2}$.
- By Pythagoras' Theorem on the right angled triangle,

$$r^2 + r^2 = 4^2$$

$$2r^2 = 16$$

$$r^2 = 8$$

$$\therefore r = 2\sqrt{2} \qquad C(0, 2)$$